A Minimal Prikry-type Forcing for Singularizing a Measurable Cardinal

Karen Räsch University of Münster

Hejnice, 03. February 2011

Tree Prikry Forcing for a Sequence of normal measures The Minimality of P₇,

Introduction

• This talk introduces a minimal Prikry-type forcing, i.e., it has the typical properties of Prikry-type forcings while every generic extension by it has no proper intermediate models.

Introduction

- There are lots of minimal forcings, like Sacks forcing or Laver forcing. Other forcings such as Cohen forcing are not minimal.
- It is known that the classical Prikry forcing and also the supercompact Prikry-type forcing have many intermediate models.

Tree Prikry Forcing for a Sequence of normal measures The Minimality of P₇,

Introduction

• This talk introduces a minimal Prikry-type forcing, i.e., it has the typical properties of Prikry-type forcings while every generic extension by it has no proper intermediate models.

Introduction

- There are lots of minimal forcings, like Sacks forcing or Laver forcing. Other forcings such as Cohen forcing are not minimal.
- It is known that the classical Prikry forcing and also the supercompact Prikry-type forcing have many intermediate models.

Tree Prikry Forcing for a Sequence of normal measures The Minimality of P₇,

Introduction

• This talk introduces a minimal Prikry-type forcing, i.e., it has the typical properties of Prikry-type forcings while every generic extension by it has no proper intermediate models.

Introduction

- There are lots of minimal forcings, like Sacks forcing or Laver forcing. Other forcings such as Cohen forcing are not minimal.
- It is known that the classical Prikry forcing and also the supercompact Prikry-type forcing have many intermediate models.

This work was inspired by the following result

Theorem (Gitik, Kanovei, Koepke, 2010)

Let *V*[*G*] be a generic extension by classical Prikry forcing.

Then every intermediate model is a Prikry extension by this forcing and is generated by some subsequence of the associated Prikry sequence.

This work was inspired by the following result

Theorem (Gitik, Kanovei, Koepke, 2010)

Let V[G] be a generic extension by classical Prikry forcing.

Then every intermediate model is a Prikry extension by this forcing and is generated by some subsequence of the associated Prikry sequence.

This work was inspired by the following result

Theorem (Gitik, Kanovei, Koepke, 2010)

Let V[G] be a generic extension by classical Prikry forcing.

Then every intermediate model is a Prikry extension by this forcing and is generated by some subsequence of the associated Prikry sequence.

This work was inspired by the following result

Theorem (Gitik, Kanovei, Koepke, 2010)

Let V[G] be a generic extension by classical Prikry forcing.

Then every intermediate model is a Prikry extension by this forcing and is generated by some subsequence of the associated Prikry sequence.

For the rest of the talk let κ be a measurable cardinal.

The classical Prikry forcing is equivalent to a Prikry tree forcing. Inspired by this, we define the partial order \mathbb{P}_{u} .

We obtain a standard Prikry lemma for $\mathbb{P}_{\!\!\mathcal{U}}$, which makes it worthy of being called a Prikry-type forcing.

The minimality of \mathbb{P}_{u} is a direct consequence of:

Theorem (Koepke, Schlicht, R., 2010)

Let V[G] be a generic extension by \mathbb{P}_{u} where \mathcal{U} is sequence of pairwise distinct normal measures on κ .

For the rest of the talk let κ be a measurable cardinal.

The classical Prikry forcing is equivalent to a Prikry tree forcing. Inspired by this, we define the partial order \mathbb{P}_{u} .

We obtain a standard Prikry lemma for $\mathbb{P}_{\!\!\mathcal{U}}$, which makes it worthy of being called a Prikry-type forcing.

The minimality of \mathbb{P}_{u} is a direct consequence of:

Theorem (Koepke, Schlicht, R., 2010)

Let V[G] be a generic extension by \mathbb{P}_{u} where \mathcal{U} is sequence of pairwise distinct normal measures on κ .

For the rest of the talk let κ be a measurable cardinal.

The classical Prikry forcing is equivalent to a Prikry tree forcing. Inspired by this, we define the partial order \mathbb{P}_{u} .

We obtain a standard Prikry lemma for $\mathbb{P}_{\!\!\mathcal{U}}$, which makes it worthy of being called a Prikry-type forcing.

The minimality of \mathbb{P}_{u} is a direct consequence of:

Theorem (Koepke, Schlicht, R., 2010)

Let V[G] be a generic extension by \mathbb{P}_{u} where \mathcal{U} is sequence of pairwise distinct normal measures on κ .

For the rest of the talk let κ be a measurable cardinal.

The classical Prikry forcing is equivalent to a Prikry tree forcing. Inspired by this, we define the partial order \mathbb{P}_{u} .

We obtain a standard Prikry lemma for $\mathbb{P}_{\!\!\mathcal{U}}$, which makes it worthy of being called a Prikry-type forcing.

The minimality of \mathbb{P}_{u} is a direct consequence of:

Theorem (Koepke, Schlicht, R., 2010)

Let V[G] be a generic extension by \mathbb{P}_{u} where \mathcal{U} is sequence of pairwise distinct normal measures on κ .

For the rest of the talk let κ be a measurable cardinal.

The classical Prikry forcing is equivalent to a Prikry tree forcing. Inspired by this, we define the partial order \mathbb{P}_{u} .

We obtain a standard Prikry lemma for $\mathbb{P}_{\!\!\mathcal{U}}$, which makes it worthy of being called a Prikry-type forcing.

The minimality of \mathbb{P}_{u} is a direct consequence of:

Theorem (Koepke, Schlicht, R., 2010)

Let V[G] be a generic extension by \mathbb{P}_{u} where \mathcal{U} is sequence of pairwise distinct normal measures on κ .

For the rest of the talk let κ be a measurable cardinal.

The classical Prikry forcing is equivalent to a Prikry tree forcing. Inspired by this, we define the partial order \mathbb{P}_{u} .

We obtain a standard Prikry lemma for $\mathbb{P}_{\!\!\mathcal{U}}$, which makes it worthy of being called a Prikry-type forcing.

The minimality of \mathbb{P}_{u} is a direct consequence of:

Theorem (Koepke, Schlicht, R., 2010)

Let V[G] be a generic extension by \mathbb{P}_{u} where \mathcal{U} is sequence of pairwise distinct normal measures on κ .

Tree Prikry Forcing for a Sequence of normal measures The Minimality of P₁₄

Preliminaries

 Think of u, v ∈ [κ]^{<ω} as strictly increasing sequences of ordinals. By u ≤ v we mean that u is an initial segment of v. Concatenation is denoted by the symbol ∩; the restriction of the domain by ↑.

- A tree is a non-empty subset of [κ]^{<ω} which is closed under initial segments. Lev_k(T) denotes the k-th level of T.
- We denote the minimal inner model of ZFC containing the set X ⊆ V and incorporating V by V[X].
 We say X is V-constructibly equivalent to Y, in short X ≡_V Y, if V[X] = V[Y].

Tree Prikry Forcing for a Sequence of normal measures The Minimality of P₁

Preliminaries

 Think of u, v ∈ [κ]^{<ω} as strictly increasing sequences of ordinals. By u ≤ v we mean that u is an initial segment of v. Concatenation is denoted by the symbol ^; the restriction of the domain by ↑.

- A tree is a non-empty subset of [κ]^{<ω} which is closed under initial segments. Lev_k(T) denotes the k-th level of T.
- We denote the minimal inner model of ZFC containing the set X ⊆ V and incorporating V by V[X].
 We say X is V-constructibly equivalent to Y, in short X ≡_V Y, if V[X] = V[Y].

Tree Prikry Forcing for a Sequence of normal measures The Minimality of P₁

Preliminaries

 Think of u, v ∈ [κ]^{<ω} as strictly increasing sequences of ordinals. By u ≤ v we mean that u is an initial segment of v. Concatenation is denoted by the symbol ^; the restriction of the domain by ↑.

- A tree is a non-empty subset of [κ]^{<ω} which is closed under initial segments. Lev_k(T) denotes the k-th level of T.
- We denote the minimal inner model of ZFC containing the set X ⊆ V and incorporating V by V[X].
 We say X is V-constructibly equivalent to Y, in short X ≡_V Y, if V[X] = V[Y].

- Think of u, v ∈ [κ]^{<ω} as strictly increasing sequences of ordinals. By u ≤ v we mean that u is an initial segment of v. Concatenation is denoted by the symbol ^; the restriction of the domain by ↑.
- A tree is a non-empty subset of [κ]^{<ω} which is closed under initial segments. Lev_k(T) denotes the k-th level of T.
- We denote the minimal inner model of ZFC containing the set X ⊆ V and incorporating V by V[X].
 We say X is V-constructibly equivalent to Y, in short X ≡_V Y, if V[X] = V[Y].

Tree Prikry Forcing for a Sequence of normal measures The Minimality of P, ,

Preliminaries

 We will not deal with inner models of ZFC but with sets of ordinals.

Reason: Every intermediate inner model $V \subseteq M \subseteq V[G]$ of ZFC is generated by a single set. Hence consider all sets of ordinals in V[G] with the equivalence relation \equiv_V .

• Fix a sequence $\mathcal{U} = \langle U_{\alpha} : \alpha < \kappa \rangle$ of pairwise distinct normal measures on κ .

The consistency strength is

 $\rm ZFC+$ "there exists a measurable cardinal"

by a theorem of Kunen and Paris.

Tree Prikry Forcing for a Sequence of normal measures The Minimality of P, , Introduction Preliminaries

Preliminaries

 We will not deal with inner models of ZFC but with sets of ordinals.

Reason: Every intermediate inner model $V \subseteq M \subseteq V[G]$ of ZFC is generated by a single set. Hence consider all sets of ordinals in V[G] with the equivalence relation \equiv_V .

• Fix a sequence $\mathcal{U} = \langle U_{\alpha} : \alpha < \kappa \rangle$ of pairwise distinct normal measures on κ .

The consistency strength is

 $\rm ZFC$ + "there exists a measurable cardinal"

by a theorem of Kunen and Paris.

Tree Prikry Forcing for a Sequence of normal measures The Minimality of P, , Introduction Preliminaries

Preliminaries

 We will not deal with inner models of ZFC but with sets of ordinals.

Reason: Every intermediate inner model $V \subseteq M \subseteq V[G]$ of ZFC is generated by a single set. Hence consider all sets of ordinals in V[G] with the equivalence relation \equiv_V .

• Fix a sequence $\mathcal{U} = \langle U_{\alpha} : \alpha < \kappa \rangle$ of pairwise distinct normal measures on κ .

The consistency strength is

 $\mathrm{ZFC}+$ "there exists a measurable cardinal"

by a theorem of Kunen and Paris.

Tree Prikry Forcing for a Sequence of normal measures The Minimality of P, , Introduction Preliminaries

Preliminaries

 We will not deal with inner models of ZFC but with sets of ordinals.

Reason: Every intermediate inner model $V \subseteq M \subseteq V[G]$ of ZFC is generated by a single set. Hence consider all sets of ordinals in V[G] with the equivalence relation \equiv_V .

• Fix a sequence $\mathcal{U} = \langle U_{\alpha} : \alpha < \kappa \rangle$ of pairwise distinct normal measures on κ .

The consistency strength is

ZFC + "there exists a measurable cardinal"

by a theorem of Kunen and Paris.

Tree Prikry Forcing for a Sequence of normal measures The Minimality of P, , Introduction Preliminaries

Preliminaries

 We will not deal with inner models of ZFC but with sets of ordinals.

Reason: Every intermediate inner model $V \subseteq M \subseteq V[G]$ of ZFC is generated by a single set. Hence consider all sets of ordinals in V[G] with the equivalence relation \equiv_V .

• Fix a sequence $\mathcal{U} = \langle U_{\alpha} : \alpha < \kappa \rangle$ of pairwise distinct normal measures on κ .

The consistency strength is

 $\rm ZFC$ + "there exists a measurable cardinal"

by a theorem of Kunen and Paris.

Tree Prikry Forcing for a Sequence of normal measures The Minimality of P₂, \mathcal{U} -Trees and the Partial Order $\mathbb{P}_{\mathcal{U}}$ Partition Properties of \mathcal{U} -Trees Forcing with $\mathbb{P}_{r_{\mathcal{U}}}$

Definition of a \mathcal{U} -Tree

Definition

A set $T \subseteq [\kappa]^{<\omega}$ is called \mathcal{U} -tree with trunk t if

- $\langle T, \triangleleft \rangle$ is a tree.
- $t \in T$ and for all $u \in T$ we have $u \leq t$ or $t \leq u$.
- For all $u \in T$ if $t \leq u$ then

$$\operatorname{Suc}_T(u) := \{ \xi < \kappa : u^{\langle \xi \rangle} \in T \} \in U_{\max(u)}.$$

Tree Prikry Forcing for a Sequence of normal measures The Minimality of P₂, \mathcal{U} -Trees and the Partial Order $\mathbb{P}_{\mathcal{U}}$ Partition Properties of \mathcal{U} -Trees Forcing with $\mathbb{P}_{r_{\mathcal{U}}}$

Definition of a \mathcal{U} -Tree

Definition

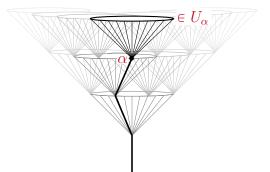
A set $T \subseteq [\kappa]^{<\omega}$ is called \mathcal{U} -tree with trunk t if

- $\langle T, \triangleleft \rangle$ is a tree.
- $t \in T$ and for all $u \in T$ we have $u \leq t$ or $t \leq u$.
- For all $u \in T$ if $t \leq u$ then

$$\operatorname{Suc}_T(u) := \{ \xi < \kappa : u^{\widehat{\xi}} \in T \} \in U_{\max(u)}$$

Tree Prikry Forcing for a Sequence of normal measures The Minimality of P., \mathcal{U} -Trees and the Partial Order $\mathbb{P}_{\mathcal{U}}$ Partition Properties of \mathcal{U} -Trees Forcing with $\mathbb{P}_{r_{\mathcal{U}}}$

An Image of a \mathcal{U} -Tree



Introduction Tree Prikry Forcing for a Sequence of normal measures The Minimality of P77 \mathcal{U} -Trees and the Partial Order $\mathbb{P}_{\mathcal{U}}$ Partition Properties of \mathcal{U} -Trees Forcing with $\mathbb{P}_{r_{\mathcal{U}}}$

Some Properties of *U*-Trees

• Let
$$u \in T$$
, $u \ge t$. Then
 $T \upharpoonright u := \{ v \in T : u \le v \lor v \le u \}$
is a \mathcal{U} -tree with trunk u and $\langle t, T \rangle \ge \langle u, T \upharpoonright u$

• The intersection of less than κ many U-trees all having the same trunk t is again a U-tree with trunk t.

Introduction Tree Prikry Forcing for a Sequence of normal measures The Minimality of $\mathbb{P}_{\mathcal{U}}$

 $\begin{array}{l} \label{eq:constraint} \mathcal{U}\text{-}\text{Trees and the Partial Order } \mathbb{P}_{\mathcal{U}} \\ \text{Partition Properties of } \mathcal{U}\text{-}\text{Trees} \\ \text{Forcing with } \mathbb{P}_{\mathcal{U}}, \end{array}$

Some Properties of *U*-Trees

• Let
$$u \in T$$
, $u \ge t$. Then

 $T \upharpoonright u := \{ v \in T : u \triangleleft v \lor v \triangleleft u \}$

is a \mathcal{U} -tree with trunk u and $\langle t, T \rangle \ge \langle u, T \upharpoonright u \rangle$.

 The intersection of less than κ many U-trees all having the same trunk t is again a U-tree with trunk t. Introduction Tree Prikry Forcing for a Sequence of normal measures The Minimality of $\mathbb{P}_{\mathcal{U}}$

 \mathcal{U} -Trees and the Partial Order $\mathbb{P}_{\mathcal{U}}$ Partition Properties of \mathcal{U} -Trees Forcing with $\mathbb{P}_{r_{\mathcal{U}}}$

Some Properties of *U*-Trees

• Let
$$u \in T$$
, $u \ge t$. Then
 $T \upharpoonright u := \{ v \in T : u \leq v \lor v \leq u \}$

is a \mathcal{U} -tree with trunk u and $\langle t, T \rangle \ge \langle u, T \upharpoonright u \rangle$.

 The intersection of less than κ many U-trees all having the same trunk t is again a U-tree with trunk t.

Tree Prikry Forcing for a Sequence of normal measures The Minimality of Pr, \mathcal{U} -Trees and the Partial Order $\mathbb{P}_{\mathcal{U}}$ Partition Properties of \mathcal{U} -Trees Forcing with $\mathbb{P}_{r_{\mathcal{U}}}$

The Partial Order \mathbb{P}_{u}

Definition

Let $\mathbb{P}_{u} := \{ \langle t, T \rangle : T \text{ is a } \mathcal{U} \text{-tree with trunk } t \}.$

Furthermore for $\langle s, S \rangle$, $\langle t, T \rangle \in \mathbb{P}_{u}$ define

 $\begin{array}{ll} \langle s,S\rangle \leqslant \langle t,T\rangle & \text{ if } \quad S \subseteq T \\ \langle s,S\rangle \leqslant^* \langle t,T\rangle & \text{ if } \quad S \subseteq T \text{ and } s=t \end{array}$

Karen Räsch A Minimal Prikry-type Forcing for Singularizing a Measurable Cardinal

Tree Prikry Forcing for a Sequence of normal measures The Minimality of Pr, \mathcal{U} -Trees and the Partial Order $\mathbb{P}_{\mathcal{U}}$ Partition Properties of \mathcal{U} -Trees Forcing with $\mathbb{P}_{r_{\mathcal{U}}}$

The Partial Order \mathbb{P}_{u}

Definition

Let $\mathbb{P}_{u} := \{ \langle t, T \rangle : T \text{ is a } \mathcal{U} \text{-tree with trunk } t \}.$ Furthermore for $\langle s, S \rangle$, $\langle t, T \rangle \in \mathbb{P}_{u}$ define $\langle s, S \rangle \leqslant \langle t, T \rangle$ if $S \subseteq T$ $\langle s, S \rangle \leqslant^{*} \langle t, T \rangle$ if $S \subseteq T$ and s = t

Tree Prikry Forcing for a Sequence of normal measures The Minimality of Pr, \mathcal{U} -Trees and the Partial Order $\mathbb{P}_{\mathcal{U}}$ Partition Properties of \mathcal{U} -Trees Forcing with $\mathbb{P}_{r_{\mathcal{U}}}$

The Partial Order \mathbb{P}_{u}

Definition

Let $\mathbb{P}_{u} := \{ \langle t, T \rangle : T \text{ is a } \mathcal{U} \text{-tree with trunk } t \}.$ Furthermore for $\langle s, S \rangle$, $\langle t, T \rangle \in \mathbb{P}_{u}$ define $\langle s, S \rangle \leqslant \langle t, T \rangle$ if $S \subseteq T$ $\langle s, S \rangle \leqslant^{*} \langle t, T \rangle$ if $S \subseteq T$ and s = t Introduction Tree Prikry Forcing for a Sequence of normal measures U-Trees and the Partial Order P Partition Properties of U-Trees Forcing with P

Colorings of \mathcal{U} -Trees

Lemma (Colorings of \mathcal{U} -trees)

Let T be a U-tree and $c: T \rightarrow \lambda$ with $\lambda < \kappa$.

Then there is a \mathcal{U} -tree $\overline{T} \subseteq T$ with the same trunk homogeneous for c, i.e., every two elements of c on the same level get the same color.

Proof.

Introduction Tree Prikry Forcing for a Sequence of normal measures \mathcal{U} -Trees and the Partial Order $\mathbb{P}_{\mathcal{U}}$ Partition Properties of \mathcal{U} -Trees Forcing with \mathbb{P}_{r} ,

Colorings of \mathcal{U} -Trees

Lemma (Colorings of \mathcal{U} -trees)

Let T be a U-tree and $c: T \rightarrow \lambda$ with $\lambda < \kappa$.

Then there is a \mathcal{U} -tree $\overline{T} \subseteq T$ with the same trunk homogeneous for c, i.e., every two elements of c on the same level get the same color.

Proof.

Introduction Tree Prikry Forcing for a Sequence of normal measures The Minimality of P. \mathcal{U} -Trees and the Partial Order $\mathbb{P}_{\mathcal{U}}$ Partition Properties of \mathcal{U} -Trees Forcing with $\mathbb{P}_{\mathcal{U}}$

Colorings of *U*-Trees

Lemma (Colorings of *U*-trees)

Let T be a U-tree and $c: T \rightarrow \lambda$ with $\lambda < \kappa$.

Then there is a \mathcal{U} -tree $\overline{T} \subseteq T$ with the same trunk homogeneous for c, *i.e.*, every two elements of c on the same level get the same color.

Proof.

Introduction Tree Prikry Forcing for a Sequence of normal measures The Minimality of P., \mathcal{U} -Trees and the Partial Order $\mathbb{P}_{\mathcal{U}}$ Partition Properties of \mathcal{U} -Trees Forcing with $\mathbb{P}_{\mathcal{U}}$

Colorings of *U*-Trees

Lemma (Colorings of *U*-trees)

Let T be a U-tree and $c: T \rightarrow \lambda$ with $\lambda < \kappa$.

Then there is a \mathcal{U} -tree $\overline{T} \subseteq T$ with the same trunk homogeneous for c, *i.e.*, every two elements of c on the same level get the same color.

Proof.

Tree Prikry Forcing for a Sequence of normal measures The Minimality of P₂, $\begin{array}{l} \mathcal{U}\text{-Trees and the Partial Order } \mathbb{P}_{\mathcal{U}} \\ \text{Partition Properties of } \mathcal{U}\text{-Trees} \\ \text{Forcing with } \mathbb{P}_{\mathcal{U}} \end{array}$

Graphs on U-Trees

Definition

For $u, v \in [\kappa]^{<\omega}$ enumerate $u \cup v$ strictly increasing as $\{\xi_i : i < n\}$ and define type $(u, v) \in 3^n$ by

$$\operatorname{type}(u,v)(i) = \begin{cases} 0 & \text{if } \xi_i \in u \setminus v \\ 1 & \text{if } \xi_i \in v \setminus u \\ 2 & \text{if } \xi_i \in u \cap v. \end{cases}$$

Karen Räsch A Minimal Prikry-type Forcing for Singularizing a Measurable Cardinal

Tree Prikry Forcing for a Sequence of normal measures The Minimality of $\mathbb{P}_{7,7}$

 $\begin{array}{l} \mathcal{U}\text{-Trees and the Partial Order } \mathbb{P}_{\mathcal{U}} \\ \text{Partition Properties of } \mathcal{U}\text{-Trees} \\ \text{Forcing with } \mathbb{P}_{\mathcal{U}} \end{array}$

Graphs on U-Trees

Definition

For $u, v \in [\kappa]^{<\omega}$ enumerate $u \cup v$ strictly increasing as $\{\xi_i : i < n\}$ and define type $(u, v) \in 3^n$ by

$$\operatorname{type}(u,v)(i) = \begin{cases} 0 & \text{if } \xi_i \in u \setminus v \\ 1 & \text{if } \xi_i \in v \setminus u \\ 2 & \text{if } \xi_i \in u \cap v. \end{cases}$$

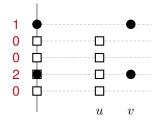
Tree Prikry Forcing for a Sequence of normal measures The Minimality of P₂, $\begin{array}{l} \mathcal{U}\text{-Trees and the Partial Order } \mathbb{P}_{\mathcal{U}} \\ \text{Partition Properties of } \mathcal{U}\text{-Trees} \\ \text{Forcing with } \mathbb{P}_{\mathcal{U}} \end{array}$

Graphs on U-Trees

Definition

For $u, v \in [\kappa]^{<\omega}$ enumerate $u \cup v$ strictly increasing as $\{\xi_i : i < n\}$ and define type $(u, v) \in 3^n$ by

$$\operatorname{type}(u,v)(i) = \begin{cases} 0 & \text{if } \xi_i \in u \setminus v \\ 1 & \text{if } \xi_i \in v \setminus u \\ 2 & \text{if } \xi_i \in u \cap v. \end{cases}$$



Tree Prikry Forcing for a Sequence of normal measures The Minimality of \mathbb{P}_{r_2} $\begin{array}{l} \mathcal{U}\text{-Trees and the Partial Order } \mathbb{P}_{\mathcal{U}} \\ \text{Partition Properties of } \mathcal{U}\text{-Trees} \\ \text{Forcing with } \mathbb{P}_{\mathcal{U}}, \end{array}$

Graphs on U-Trees

Lemma (Graphs on U-trees)

Let T be a \mathcal{U} -tree and $c: T^2 \rightarrow \lambda$ for some $\lambda < \kappa$.

Then there is a \mathcal{U} -tree $\overline{T} \subseteq T$ with the same trunk such that for all $u, v \in \overline{T}$ the value of c only depends on the type of u, v.

Proof.

First use the normality to define a diagonal intersection of \mathcal{U} -trees. The proof itself is a quite technical induction with lots of case distinctions.

 \mathcal{U} -Trees and the Partial Order $\mathbb{P}_{\mathcal{U}}$ Partition Properties of \mathcal{U} -Trees Forcing with $\mathbb{P}_{\mathcal{U}}$

Graphs on U-Trees

Lemma (Graphs on U-trees)

Let T be a \mathcal{U} -tree and $c: T^2 \rightarrow \lambda$ for some $\lambda < \kappa$.

Then there is a \mathcal{U} -tree $\overline{T} \subseteq T$ with the same trunk such that for all $u, v \in \overline{T}$ the value of c only depends on the type of u, v.

Proof.

First use the normality to define a diagonal intersection of \mathcal{U} -trees. The proof itself is a quite technical induction with lots of case distinctions.

 \mathcal{U} -Trees and the Partial Order $\mathbb{P}_{\mathcal{U}}$ Partition Properties of \mathcal{U} -Trees Forcing with $\mathbb{P}_{\mathcal{U}}$

Graphs on U-Trees

Lemma (Graphs on U-trees)

Let T be a \mathcal{U} -tree and $c: T^2 \to \lambda$ for some $\lambda < \kappa$.

Then there is a \mathcal{U} -tree $\overline{T} \subseteq T$ with the same trunk such that for all $u, v \in \overline{T}$ the value of c only depends on the type of u, v.

Proof.

First use the normality to define a diagonal intersection of \mathcal{U} -trees. The proof itself is a quite technical induction with lots of case distinctions.

 $\begin{array}{c} \\ \mbox{Introduction} \\ \mbox{Tree Prikry Forcing for a Sequence of normal measures} \\ \\ \mbox{The Minimality of } \mathbb{P}_{\mathcal{U}} \\ \end{array} \\ \begin{array}{c} \mathcal{U}\mbox{-Trees and the Partial Part$

Forcing with \mathbb{P}_{u}

- Classical Prikry tree forcing is \mathbb{P}_{u} when all U_{α} equal the same κ -complete nonprincipal ultrafilter U over κ .
- Let G be generic on \mathbb{P}_{u} . As usual $f_{G} := \bigcup \{t : \exists T \langle t, T \rangle \in G \}$

- *G* consists of all \mathcal{U} -trees of which f_G is a branch, i.e., $f_G \equiv_V G$.
- $\langle \mathbb{P}_{u}, \leqslant \rangle$ satisfies the κ^{+} -cc.
- $\langle \mathbb{P}_{u}, \leq^* \rangle$ is κ -closed.

 $\begin{array}{c} \mbox{Introduction} & \mbox{\mathcal{U}-Trees and the Partial Or} \\ \mbox{Tree Prikry Forcing for a Sequence of normal measures} \\ \mbox{The Minimality of $\mathbb{P}_{\mathcal{H}}$} & \mbox{Forcing with $\mathbb{P}_{\mathcal{H}}$} \end{array}$

Forcing with \mathbb{P}_{u}

- Classical Prikry tree forcing is \mathbb{P}_{u} when all U_{α} equal the same κ -complete nonprincipal ultrafilter U over κ .
- Let G be generic on P_u. As usual
 f_G := ∪{t : ∃T ⟨t, T⟩ ∈ G}
 is an ω-sequence cofinal in κ, called Prikry sequence.
- *G* consists of all \mathcal{U} -trees of which f_G is a branch, i.e., $f_G \equiv_V G$.
- $\langle \mathbb{P}_{u}, \leqslant \rangle$ satisfies the κ^{+} -cc.
- $\langle \mathbb{P}_{u}, \leq^* \rangle$ is κ -closed.

 Introduction
 \mathcal{U} -Trees and the Partial Or

 Tree Prikry Forcing for a Sequence of normal measures
 Partition Properties of \mathcal{U} -Trest of $\mathcal{P}_{\mathcal{U}}$

 The Minimality of $\mathbb{P}_{\mathcal{U}}$ Forcing with $\mathbb{P}_{\mathcal{U}}$

Forcing with \mathbb{P}_{u}

- Classical Prikry tree forcing is \mathbb{P}_{u} when all U_{α} equal the same κ -complete nonprincipal ultrafilter U over κ .
- Let G be generic on \mathbb{P}_{u} . As usual

 $f_G := \bigcup \left\{ t : \exists T \langle t, T \rangle \in G \right\}$

- *G* consists of all \mathcal{U} -trees of which f_G is a branch, i.e., $f_G \equiv_V G$.
- $\langle \mathbb{P}_{u}, \leqslant \rangle$ satisfies the κ^{+} -cc.
- $\langle \mathbb{P}_{u}, \leq^{*} \rangle$ is κ -closed.

 Introduction
 \mathcal{U} -Trees and the Partial Or

 Tree Prikry Forcing for a Sequence of normal measures
 Partition Properties of \mathcal{U} -Trest of $\mathcal{P}_{\mathcal{U}}$

 The Minimality of $\mathbb{P}_{\mathcal{U}}$ Forcing with $\mathbb{P}_{\mathcal{U}}$

Forcing with \mathbb{P}_{u}

- Classical Prikry tree forcing is \mathbb{P}_{u} when all U_{α} equal the same κ -complete nonprincipal ultrafilter U over κ .
- Let *G* be generic on \mathbb{P}_{u} . As usual $f_{G} := \bigcup \{ t : \exists T \langle t, T \rangle \in G \}$

- *G* consists of all \mathcal{U} -trees of which f_G is a branch, i.e., $f_G \equiv_V G$.
- $\langle \mathbb{P}_{u}, \leqslant \rangle$ satisfies the κ^{+} -cc.
- $\langle \mathbb{P}_{u}, \leq^{*} \rangle$ is κ -closed.

 $\begin{array}{c} \text{Introduction} \\ \text{Tree Prikry Forcing for a Sequence of normal measures} \\ \text{The Minimality of } \mathbb{P}_{\mathcal{U}} \\ \end{array}$

Forcing with \mathbb{P}_{u}

- Classical Prikry tree forcing is \mathbb{P}_{u} when all U_{α} equal the same κ -complete nonprincipal ultrafilter U over κ .
- Let G be generic on \mathbb{P}_{u} . As usual

 $f_G := \bigcup \{ t : \exists T \langle t, T \rangle \in G \}$

- *G* consists of all \mathcal{U} -trees of which f_G is a branch, i.e., $f_G \equiv_V G$.
- $\langle \mathbb{P}_{u}, \leqslant \rangle$ satisfies the κ^{+} -cc.
- $\langle \mathbb{P}_{u}, \leq^{*} \rangle$ is κ -closed.

 $\begin{array}{l} \mathcal{U}\text{-Trees and the Partial Order} \ \mathbb{P}_{\mathcal{U}} \\ \text{Partition Properties of } \mathcal{U}\text{-Trees} \\ \text{Forcing with } \mathbb{P}_{\mathcal{U}} \end{array}$

Forcing with \mathbb{P}_{u}

Lemma (Prikry lemma)

Let $\langle t,T \rangle \in \mathbb{P}_{u}$ and φ a statement in the forcing language. Then there is a direct extension $\langle s,S \rangle \in \mathbb{P}_{u}$ of $\langle t,T \rangle$ deciding φ .

 $\begin{array}{l} \mathcal{U}\text{-Trees and the Partial Order } \mathbb{P}_{\mathcal{U}} \\ \text{Partition Properties of } \mathcal{U}\text{-Trees} \\ \text{Forcing with } \mathbb{P}_{\mathcal{U}} \end{array}$

Forcing with \mathbb{P}_{u}

Lemma (Prikry lemma)

Let $\langle t, T \rangle \in \mathbb{P}_{u}$ and φ a statement in the forcing language.

Then there is a direct extension $\langle s, S \rangle \in \mathbb{P}_{u}$ of $\langle t, T \rangle$ deciding φ .

Proof.

Follows easily from the lemma about colorings of \mathcal{U} -trees.

Introduction Tree Prikry Forcing for a Sequence of normal measures The Minimality of $\mathbb{P}_{\mathcal{U}}$

 $\begin{array}{l} \mathcal{U}\text{-Trees and the Partial Order } \mathbb{P}_{\mathcal{U}} \\ \text{Partition Properties of } \mathcal{U}\text{-Trees} \\ \text{Forcing with } \mathbb{P}_{\mathcal{U}} \end{array}$

Forcing with \mathbb{P}_{u}

Lemma (Prikry lemma)

Let $\langle t,T \rangle \in \mathbb{P}_{u}$ and φ a statement in the forcing language. Then there is a direct extension $\langle s,S \rangle \in \mathbb{P}_{u}$ of $\langle t,T \rangle$ deciding φ .

The following theorem sums up what we achieved so far.

Theorem

Let *G* be a generic filter on \mathbb{P}_{u} . Then in *V*[*G*]

- κ is singular with $cf(\kappa) = \aleph_0$.
- No bounded subsets of κ are added.
- All cardinals are preserved and also all cofinalities but κ's.

The Theorem

Remember:

- U = ⟨U_α : α < κ⟩ is a sequence of pairwise distinct normal measures on the measurable cardinal κ.
- $\langle A_{\alpha} : \alpha < \kappa \rangle$ is a family of pairwise disjoint subsets of κ such that $A_{\alpha} \in U_{\alpha}$.

Theorem (Koepke, Schlicht, R., 2010)

Let V[G] be a generic extension by \mathbb{P}_{u} . Then for every $X \in V[G]$ either $X \in V$ or $X \equiv_{V} f_{G}$.

The Theorem

Remember:

- U = ⟨U_α : α < κ⟩ is a sequence of pairwise distinct normal measures on the measurable cardinal κ.
- $\langle A_{\alpha} : \alpha < \kappa \rangle$ is a family of pairwise disjoint subsets of κ such that $A_{\alpha} \in U_{\alpha}$.

Theorem (Koepke, Schlicht, R., 2010)

Let V[G] be a generic extension by \mathbb{P}_{u} . Then for every $X \in V[G]$ either $X \in V$ or $X \equiv_{V} f_{G}$.

Proof of the Theorem – Part I Proof of the Theorem – Part II Further Remarks

Proof of the Theorem

Theorem (Koepke, Schlicht, R., 2010)

Let V[G] be a generic extension by \mathbb{P}_{u} . Then for every $X \in V[G]$ either $X \in V$ or $X \equiv_{V} f_{G}$.

The proof splits into two parts:

Part I. Subsets of κ in V[G]

Part II. Arbitrary sets of ordinals in V[G]

Proof of the Theorem – Part I Proof of the Theorem – Part II Further Remarks

Proof of the Theorem

Theorem (Koepke, Schlicht, R., 2010)

Let V[G] be a generic extension by \mathbb{P}_{u} . Then for every $X \in V[G]$ either $X \in V$ or $X \equiv_{V} f_{G}$.

The proof splits into two parts:

Part I. Subsets of κ in V[G]

Part II. Arbitrary sets of ordinals in V[G]

Proof of the Theorem – Part I Proof of the Theorem – Part II Further Remarks

Proof of the Theorem – Part I

Theorem (Part I)

Let V[G] be a generic extension by \mathbb{P}_{u} . Then for every $X \subseteq \kappa$ in V[G] either $X \in V$ or $X \equiv_{V} f_{G}$.

We will use the lemma about graphs on \mathcal{U} -trees

Proof of the Theorem – Part I Proof of the Theorem – Part II Further Remarks

Proof of the Theorem – Part I

Theorem (Part I)

Let V[G] be a generic extension by \mathbb{P}_{u} . Then for every $X \subseteq \kappa$ in V[G] either $X \in V$ or $X \equiv_{V} f_{G}$.

We will use the lemma about graphs on $\mathcal{U}\text{-}trees$

Lemma (Graphs on U-trees)

Let T be a U-tree and $c: T^2 \rightarrow \lambda, \lambda < \kappa$.

Then there is a \mathcal{U} -tree $\overline{T} \subseteq T$ with the same trunk such that the value of c only depends on the type of the arguments.

Proof of the Theorem – Part I Proof of the Theorem – Part II Further Remarks

Proof of the Theorem – Part I

Theorem (Part I)

Let V[G] be a generic extension by \mathbb{P}_{u} . Then for every $X \subseteq \kappa$ in V[G] either $X \in V$ or $X \equiv_{V} f_{G}$.

We will use the lemma about graphs on \mathcal{U} -trees and

Proof of the Theorem – Part I Proof of the Theorem – Part II Further Remarks

Proof of the Theorem – Part I

Theorem (Part I)

Let V[G] be a generic extension by \mathbb{P}_{u} . Then for every $X \subseteq \kappa$ in V[G] either $X \in V$ or $X \equiv_{V} f_{G}$.

We will use the lemma about graphs on $\ensuremath{\mathcal{U}}\xspace$ trees and

Lemma

Let T be a \mathcal{U} -tree. Then there is $\overline{T} \subseteq T$ with the same trunk such that for all $u, v \in T$ with $u(n) \neq v(n)$, we have $u(m) \neq v(m)$ for all $m \ge n$ in both domains.

Proof.

Simply restrict $Suc_T(u)$ to $A_{max(u)}$ for all $u \in T$.

Proof of the Theorem – Part I Proof of the Theorem – Part II Further Remarks

Proof of the Theorem – Part I

Theorem (Part I)

Let V[G] be a generic extension by \mathbb{P}_{u} . Then for every $X \subseteq \kappa$ in V[G] either $X \in V$ or $X \equiv_{V} f_{G}$.

We will use the lemma about graphs on $\ensuremath{\mathcal{U}}\xspace$ trees and

Lemma

Let T be a \mathcal{U} -tree. Then there is $\overline{T} \subseteq T$ with the same trunk such that for all $u, v \in T$ with $u(n) \neq v(n)$, we have $u(m) \neq v(m)$ for all $m \ge n$ in both domains.

Proof.

Simply restrict $\operatorname{Suc}_T(u)$ to $A_{\max(u)}$ for all $u \in T$.

Proof of the Theorem – Part I Proof of the Theorem – Part II Further Remarks

Proof of the Theorem – Part I

Theorem (Part I)

Let V[G] be a generic extension by \mathbb{P}_{u} . Then for every $X \subseteq \kappa$ in V[G] either $X \in V$ or $X \equiv_{V} f_{G}$.

Sketch of the proof.

Let X be a name for some $X \subseteq \kappa$ and $\langle t, T \rangle \in \mathbb{P}_{u}$.

Goal: Find $p \leq \langle t, T \rangle$ such that $p \Vdash (X \in V \lor X \equiv_V \dot{f})$.

By the Prikry lemma assume that for all $u \in T$ the condition $\langle u, T \upharpoonright u \rangle$ already decides \dot{X} up to $\max(u)$.

For $u \in T$ define $X_u := \{ \xi < \max(u) : \langle u, T \upharpoonright u \rangle \Vdash \check{\xi} \in \dot{X} \}$. Consider $c : T \times T \to 2$, where

Proof of the Theorem – Part I Proof of the Theorem – Part II Further Remarks

Proof of the Theorem – Part I

Theorem (Part I)

Let V[G] be a generic extension by \mathbb{P}_{u} . Then for every $X \subseteq \kappa$ in V[G] either $X \in V$ or $X \equiv_{V} f_{G}$.

Sketch of the proof.

Let X be a name for some $X \subseteq \kappa$ and $\langle t, T \rangle \in \mathbb{P}_{u}$.

Goal: Find $p \leq \langle t, T \rangle$ such that $p \Vdash (X \in V \lor X \equiv_V \dot{f})$.

By the Prikry lemma assume that for all $u \in T$ the condition $\langle u, T \upharpoonright u \rangle$ already decides \dot{X} up to $\max(u)$.

For $u \in T$ define $X_u := \{ \xi < \max(u) : \langle u, T \upharpoonright u \rangle \Vdash \check{\xi} \in \dot{X} \}$. Consider $c : T \times T \to 2$, where

Proof of the Theorem – Part I Proof of the Theorem – Part II Further Remarks

Proof of the Theorem – Part I

Theorem (Part I)

Let V[G] be a generic extension by \mathbb{P}_{u} . Then for every $X \subseteq \kappa$ in V[G] either $X \in V$ or $X \equiv_{V} f_{G}$.

Sketch of the proof.

Let X be a name for some $X \subseteq \kappa$ and $\langle t, T \rangle \in \mathbb{P}_{u}$.

Goal: Find $p \leq \langle t, T \rangle$ such that $p \Vdash (X \in V \lor X \equiv_V f)$.

By the Prikry lemma assume that for all $u \in T$ the condition $\langle u, T \upharpoonright u \rangle$ already decides \dot{X} up to $\max(u)$.

```
For u \in T define X_u := \{ \xi < \max(u) : \langle u, T \upharpoonright u \rangle \Vdash \check{\xi} \in \dot{X} \}.
Consider c : T \times T \to 2, where
```

Proof of the Theorem – Part I Proof of the Theorem – Part II Further Remarks

Proof of the Theorem – Part I

Theorem (Part I)

Let V[G] be a generic extension by \mathbb{P}_{u} . Then for every $X \subseteq \kappa$ in V[G] either $X \in V$ or $X \equiv_{V} f_{G}$.

Sketch of the proof.

Let X be a name for some $X \subseteq \kappa$ and $\langle t, T \rangle \in \mathbb{P}_{u}$.

Goal: Find $p \leq \langle t, T \rangle$ such that $p \Vdash (X \in V \lor X \equiv_V f)$.

By the Prikry lemma assume that for all $u \in T$ the condition $\langle u, T \upharpoonright u \rangle$ already decides \dot{X} up to $\max(u)$.

```
For u \in T define X_u := \{ \xi < \max(u) : \langle u, T \upharpoonright u \rangle \Vdash \check{\xi} \in \dot{X} \}.
Consider c : T \times T \to 2, where
```

Proof of the Theorem – Part I Proof of the Theorem – Part II Further Remarks

Proof of the Theorem – Part I

Theorem (Part I)

Let V[G] be a generic extension by \mathbb{P}_{u} . Then for every $X \subseteq \kappa$ in V[G] either $X \in V$ or $X \equiv_{V} f_{G}$.

Sketch of the proof.

Let X be a name for some $X \subseteq \kappa$ and $\langle t, T \rangle \in \mathbb{P}_{u}$.

Goal: Find $p \leq \langle t, T \rangle$ such that $p \Vdash (X \in V \lor X \equiv_V f)$.

By the Prikry lemma assume that for all $u \in T$ the condition $\langle u, T \upharpoonright u \rangle$ already decides \dot{X} up to $\max(u)$.

For $u \in T$ define $X_u := \{ \xi < \max(u) : \langle u, T \upharpoonright u \rangle \Vdash \check{\xi} \in \dot{X} \}.$

Consider $c: T \times T \rightarrow 2$, where

Proof of the Theorem – Part I Proof of the Theorem – Part II Further Remarks

Proof of the Theorem – Part I

Theorem (Part I)

Let V[G] be a generic extension by \mathbb{P}_{u} . Then for every $X \subseteq \kappa$ in V[G] either $X \in V$ or $X \equiv_{V} f_{G}$.

Sketch of the proof.

Let X be a name for some $X \subseteq \kappa$ and $\langle t, T \rangle \in \mathbb{P}_{u}$.

Goal: Find $p \leq \langle t, T \rangle$ such that $p \Vdash (X \in V \lor X \equiv_V f)$.

By the Prikry lemma assume that for all $u \in T$ the condition $\langle u, T \upharpoonright u \rangle$ already decides \dot{X} up to $\max(u)$.

For $u \in T$ define $X_u := \{ \xi < \max(u) : \langle u, T \upharpoonright u \rangle \Vdash \check{\xi} \in \dot{X} \}.$ Consider $c : T \times T \to 2$, where

Proof of the Theorem – Part I Proof of the Theorem – Part II Further Remarks

Proof of the Theorem – Part I

Theorem (Part I)

Let V[G] be a generic extension by \mathbb{P}_{u} .

Then for every $X \subseteq \kappa$ in V[G] either $X \in V$ or $X \equiv_V f_G$.

Sketch of the proof (continued).

Thin out T and obtain $\overline{T} \subseteq T$ such that

- the values of c on $\bar{T}\times\bar{T}$ only depend on the type
- for all $u, v \in \overline{T}$ with $u(n) \neq v(n)$, we have $u(m) \neq v(m)$ for all $m \ge n$ in both domains.

Claim 1. Let $s \in \overline{T}$ and $n < \omega$. Then c is constant on the set $\{\langle u, v \rangle \in \text{Lev}_{|s|+n}(\overline{T} \upharpoonright s) \times \text{Lev}_{|s|+n}(\overline{T} \upharpoonright s) : u(|s|) \neq v(|s|)\}.$ *Proof.* Later!

Proof of the Theorem – Part I Proof of the Theorem – Part II Further Remarks

Proof of the Theorem – Part I

Theorem (Part I)

Let V[G] be a generic extension by \mathbb{P}_{u} .

Then for every $X \subseteq \kappa$ in V[G] either $X \in V$ or $X \equiv_V f_G$.

Sketch of the proof (continued).

Thin out T and obtain $\overline{T} \subseteq T$ such that

- the values of c on $\bar{T} \times \bar{T}$ only depend on the type
- for all $u, v \in \overline{T}$ with $u(n) \neq v(n)$, we have $u(m) \neq v(m)$ for all $m \ge n$ in both domains.

Claim 1. Let $s \in \overline{T}$ and $n < \omega$. Then c is constant on the set $\{\langle u, v \rangle \in \text{Lev}_{|s|+n}(\overline{T} \upharpoonright s) \times \text{Lev}_{|s|+n}(\overline{T} \upharpoonright s) : u(|s|) \neq v(|s|)\}.$ *Proof.* Later!

Proof of the Theorem – Part I Proof of the Theorem – Part II Further Remarks

Proof of the Theorem – Part I

Theorem (Part I)

Let V[G] be a generic extension by \mathbb{P}_{u} .

Then for every $X \subseteq \kappa$ in V[G] either $X \in V$ or $X \equiv_V f_G$.

Sketch of the proof (continued).

Thin out T and obtain $\overline{T} \subseteq T$ such that

- the values of c on $\bar{T} \times \bar{T}$ only depend on the type
- for all $u, v \in \overline{T}$ with $u(n) \neq v(n)$, we have $u(m) \neq v(m)$ for all $m \ge n$ in both domains.

```
Claim 1. Let s \in \overline{T} and n < \omega. Then c is constant on the set

\{\langle u, v \rangle \in \text{Lev}_{|s|+n}(\overline{T} \upharpoonright s) \times \text{Lev}_{|s|+n}(\overline{T} \upharpoonright s) : u(|s|) \neq v(|s|)\}.
```

Proof of the Theorem – Part I Proof of the Theorem – Part II Further Remarks

Proof of the Theorem – Part I

Theorem (Part I)

Let V[G] be a generic extension by \mathbb{P}_{u} .

Then for every $X \subseteq \kappa$ in V[G] either $X \in V$ or $X \equiv_V f_G$.

Sketch of the proof (continued).

Thin out T and obtain $\overline{T} \subseteq T$ such that

- the values of c on $\bar{T} \times \bar{T}$ only depend on the type
- for all $u, v \in \overline{T}$ with $u(n) \neq v(n)$, we have $u(m) \neq v(m)$ for all $m \ge n$ in both domains.

Claim 1. Let $s \in \overline{T}$ and $n < \omega$. Then c is constant on the set $\{\langle u, v \rangle \in \text{Lev}_{|s|+n}(\overline{T} \upharpoonright s) \times \text{Lev}_{|s|+n}(\overline{T} \upharpoonright s) : u(|s|) \neq v(|s|)\}.$ *Proof.* Later!

Proof of the Theorem – Part I Proof of the Theorem – Part II Further Remarks

Proof of the Theorem – Part I

Theorem (Part I)

Let V[G] be a generic extension by \mathbb{P}_{u} . Then for every $X \subseteq \kappa$ in V[G] either $X \in V$ or $X \equiv_{V} f_{G}$.

Sketch of the proof (continued).

```
Claim 2. \langle t, \overline{T} \rangle forces \dot{X} \in V \lor \dot{X} \equiv_V \dot{f}.
```

Proof.

How to construct f_G from \dot{X}^G : Assume we know $s := f_G \upharpoonright m$. Case 1. There is n > 0 such that the only value of c on $\langle \langle u, v \rangle \in \text{Lev}_{m+n}(\bar{T} \upharpoonright s) \times \text{Lev}_{m+n}(\bar{T} \upharpoonright s) : u(m) \neq v(m) \}$ is 0. Then all $v \in \text{Lev}_{m+n}(\bar{T} \upharpoonright s)$ with $v(m) \neq f_G(m)$ satisfy $c(v, f_G \upharpoonright (m + n)) = 0$. Hence $X_v \neq \dot{X}^G \cap \max(v)$. This uniquely determines $f_G(m)$.

Proof of the Theorem – Part I Proof of the Theorem – Part II Further Remarks

Proof of the Theorem – Part I

Theorem (Part I)

Let V[G] be a generic extension by \mathbb{P}_{u} . Then for every $X \subseteq \kappa$ in V[G] either $X \in V$ or $X \equiv_{V} f_{G}$.

Sketch of the proof (continued).

Claim 2. $\langle t, \overline{T} \rangle$ forces $\dot{X} \in V \lor \dot{X} \equiv_V \dot{f}$.

Proof. Let G be generic, $\langle t, \overline{T} \rangle \in G$.

How to construct f_G from \dot{X}^G : Assume we know $s := f_G \upharpoonright m$. **Case 1**. There is n > 0 such that the only value of c on $\{\langle u, v \rangle \in \text{Lev}_{m+n}(\bar{T} \upharpoonright s) \times \text{Lev}_{m+n}(\bar{T} \upharpoonright s) : u(m) \neq v(m)\}$ is 0. Then all $v \in \text{Lev}_{m+n}(\bar{T} \upharpoonright s)$ with $v(m) \neq f_G(m)$ satisfy $c(v, f_G \upharpoonright (m+n)) = 0$. Hence $X_v \neq \dot{X}^G \cap \max(v)$. This uniquely determines $f_G(m)$.

Proof of the Theorem – Part I Proof of the Theorem – Part II Further Remarks

Proof of the Theorem – Part I

Theorem (Part I)

Let V[G] be a generic extension by \mathbb{P}_{u} . Then for every $X \subseteq \kappa$ in V[G] either $X \in V$ or $X \equiv_{V} f_{G}$.

Sketch of the proof (continued).

Claim 2. $\langle t, \overline{T} \rangle$ forces $X \in V \lor X \equiv_V f$. *Proof.* We have $X_{f_G \upharpoonright (k+1)} = X^G \cap f_G(k)$ for all k. Assume $X^G \notin V$. How to construct f_G from X^G : Assume we know $s := f_G \upharpoonright m$. Case 1. There is n > 0 such that the only value of c on $\{\langle u, v \rangle \in \operatorname{Lev}_{m+n}(\overline{T} \upharpoonright s) \times \operatorname{Lev}_{m+n}(\overline{T} \upharpoonright s) : u(m) \neq v(m)\}$ is 0. Then all $v \in \operatorname{Lev}_{m+n}(\overline{T} \upharpoonright s)$ with $v(m) \neq f_G(m)$ satisfy $c(v, f_G \upharpoonright (m+n)) = 0$. Hence $X_v \neq X^G \cap \max(v)$. This uniquely determines $f_G(m)$.

Proof of the Theorem – Part I Proof of the Theorem – Part II Further Remarks

Proof of the Theorem – Part I

Theorem (Part I)

Let V[G] be a generic extension by \mathbb{P}_{u} . Then for every $X \subseteq \kappa$ in V[G] either $X \in V$ or $X \equiv_{V} f_{G}$.

Sketch of the proof (continued).

Claim 2. $\langle t, \overline{T} \rangle$ forces $X \in V \lor X \equiv_V f$. *Proof.* We have $X_{f_G \upharpoonright (k+1)} = X^G \cap f_G(k)$ for all k. Assume $X^G \notin V$. How to construct f_G from \dot{X}^G : Assume we know $s := f_G \upharpoonright m$. Case 1. There is n > 0 such that the only value of c on $\{\langle u, v \rangle \in \operatorname{Lev}_{m+n}(\overline{T} \upharpoonright s) \times \operatorname{Lev}_{m+n}(\overline{T} \upharpoonright s) : u(m) \neq v(m)\}$ is 0. Then all $v \in \operatorname{Lev}_{m+n}(\overline{T} \upharpoonright s)$ with $v(m) \neq f_G(m)$ satisfy $c(v, f_G \upharpoonright (m+n)) = 0$. Hence $X_v \neq \dot{X}^G \cap \max(v)$. This uniquely determines $f_G(m)$.

Proof of the Theorem – Part I Proof of the Theorem – Part II Further Remarks

Proof of the Theorem – Part I

Theorem (Part I)

Let V[G] be a generic extension by \mathbb{P}_{u} . Then for every $X \subseteq \kappa$ in V[G] either $X \in V$ or $X \equiv_{V} f_{G}$.

Sketch of the proof (continued).

 $\begin{array}{l} \text{Claim 2. } \langle t,\bar{T}\rangle \text{ forces } \dot{X} \in V \lor \dot{X} \equiv_V \dot{f}. \\ \text{Proof. We have } X_{f_G \upharpoonright (k+1)} = \dot{X}^G \cap f_G(k) \text{ for all } k. \text{ Assume } \dot{X}^G \notin V. \\ \text{How to construct } f_G \text{ from } \dot{X}^G \text{: Assume we know } s := f_G \upharpoonright m. \\ \text{Case 1. There is } n > 0 \text{ such that the only value of } c \text{ on } \\ \langle u,v \rangle \in \operatorname{Lev}_{m+n}(\bar{T} \upharpoonright s) \times \operatorname{Lev}_{m+n}(\bar{T} \upharpoonright s) : u(m) \neq v(m) \} \text{ is } 0. \\ \text{Then all } v \in \operatorname{Lev}_{m+n}(\bar{T} \upharpoonright s) \text{ with } v(m) \neq f_G(m) \text{ satisfy } \\ c(v,f_G \upharpoonright (m+n)) = 0. \\ \text{Hence } X_v \neq \dot{X}^G \cap \max(v). \text{ This uniquely determines } f_G(m). \end{array}$

Proof of the Theorem – Part I Proof of the Theorem – Part II Further Remarks

Proof of the Theorem – Part I

Theorem (Part I)

Let V[G] be a generic extension by \mathbb{P}_{u} . Then for every $X \subseteq \kappa$ in V[G] either $X \in V$ or $X \equiv_{V} f_{G}$.

Sketch of the proof (continued).

 $\begin{array}{l} \label{eq:claim 2.} & \langle t,\bar{T}\rangle \text{ forces } \dot{X} \in V \lor \dot{X} \equiv_V \dot{f}. \\ & \textit{Proof.} \ \text{ We have } X_{f_G \upharpoonright (k+1)} = \dot{X}^G \cap f_G(k) \text{ for all } k. \text{ Assume } \dot{X}^G \notin V. \\ & \text{How to construct } f_G \text{ from } \dot{X}^G \text{ : Assume we know } s := f_G \upharpoonright m. \\ & \text{Case 1.} \ \text{ There is } n > 0 \text{ such that the only value of } c \text{ on } \\ & \{\langle u,v\rangle \in \operatorname{Lev}_{m+n}(\bar{T} \upharpoonright s) \times \operatorname{Lev}_{m+n}(\bar{T} \upharpoonright s) : u(m) \neq v(m)\} \text{ is } 0. \\ & \text{Then all } v \in \operatorname{Lev}_{m+n}(\bar{T} \upharpoonright s) \text{ with } v(m) \neq f_G(m) \text{ satisfy} \\ & c(v,f_G \upharpoonright (m+n)) = 0. \\ & \text{Hence } X_v \neq X^G \cap \max(v). \text{ This uniquely determines } f_G(m). \end{array}$

Proof of the Theorem – Part I Proof of the Theorem – Part II Further Remarks

Proof of the Theorem – Part I

Theorem (Part I)

Let V[G] be a generic extension by \mathbb{P}_{u} . Then for every $X \subseteq \kappa$ in V[G] either $X \in V$ or $X \equiv_{V} f_{G}$.

Sketch of the proof (continued).

 $\begin{array}{l} \text{Claim 2. } \langle t,\bar{T}\rangle \text{ forces } \dot{X} \in V \lor \dot{X} \equiv_V \dot{f}. \\ \text{Proof. We have } X_{f_G \upharpoonright (k+1)} = \dot{X}^G \cap f_G(k) \text{ for all } k. \text{ Assume } \dot{X}^G \notin V. \\ \text{How to construct } f_G \text{ from } \dot{X}^G \colon \text{ Assume we know } s := f_G \upharpoonright m. \\ \text{Case 1. There is } n > 0 \text{ such that the only value of } c \text{ on } \\ \{\langle u,v\rangle \in \text{Lev}_{m+n}(\bar{T}\upharpoonright s) \times \text{Lev}_{m+n}(\bar{T}\upharpoonright s) : u(m) \neq v(m)\} \text{ is } 0. \\ \text{Then all } v \in \text{Lev}_{m+n}(\bar{T}\upharpoonright s) \text{ with } v(m) \neq f_G(m) \text{ satisfy } \\ c(v,f_G \upharpoonright (m+n)) = 0. \\ \text{Hence } X_v \neq \dot{X}^G \cap \max(v). \text{ This uniquely determines } f_G(m). \end{array}$

Proof of the Theorem – Part I Proof of the Theorem – Part II Further Remarks

Proof of the Theorem – Part I

Theorem (Part I)

Let V[G] be a generic extension by \mathbb{P}_{u} . Then for every $X \subseteq \kappa$ in V[G] either $X \in V$ or $X \equiv_{V} f_{G}$.

Sketch of the proof (continued).

 $\begin{array}{l} \text{Claim 2. } \langle t,\bar{T}\rangle \text{ forces } \dot{X} \in V \lor \dot{X} \equiv_V \dot{f}. \\ \text{Proof. We have } X_{f_G \upharpoonright (k+1)} = \dot{X}^G \cap f_G(k) \text{ for all } k. \text{ Assume } \dot{X}^G \notin V. \\ \text{How to construct } f_G \text{ from } \dot{X}^G \text{: Assume we know } s := f_G \upharpoonright m. \\ \text{Case 1. There is } n > 0 \text{ such that the only value of } c \text{ on } \\ \{\langle u,v\rangle \in \operatorname{Lev}_{m+n}(\bar{T}\upharpoonright s) \times \operatorname{Lev}_{m+n}(\bar{T}\upharpoonright s) : u(m) \neq v(m)\} \text{ is } 0. \\ \text{Then all } v \in \operatorname{Lev}_{m+n}(\bar{T}\upharpoonright s) \text{ with } v(m) \neq f_G(m) \text{ satisfy } \\ c(v,f_G\upharpoonright (m+n)) = 0. \\ \text{Hence } X_v \neq \dot{X}^G \cap \max(v). \text{ This uniquely determines } f_G(m). \end{array}$

Proof of the Theorem – Part I Proof of the Theorem – Part II Further Remarks

Proof of the Theorem – Part I

Theorem (Part I)

Let V[G] be a generic extension by \mathbb{P}_{u} . Then for every $X \subseteq \kappa$ in V[G] either $X \in V$ or $X \equiv_{V} f_{G}$.

Sketch of the proof (continued).

 $\begin{array}{l} \text{Claim 2. } \langle t,\bar{T}\rangle \text{ forces } \dot{X}\in V\vee\dot{X}\equiv_V\dot{f}.\\ \text{Proof. We have } X_{f_G\upharpoonright (k+1)}=\dot{X}^G\cap f_G(k) \text{ for all } k. \text{ Assume } \dot{X}^G\notin V.\\ \text{How to construct } f_G \text{ from } \dot{X}^G \text{: Assume we know } s:=f_G\upharpoonright m.\\ \text{Case 1. There is } n>0 \text{ such that the only value of } c \text{ on } \{\langle u,v\rangle\in \mathrm{Lev}_{m+n}(\bar{T}\upharpoonright s)\times \mathrm{Lev}_{m+n}(\bar{T}\upharpoonright s):u(m)\neq v(m)\} \text{ is } 0.\\ \text{Then all } v\in \mathrm{Lev}_{m+n}(\bar{T}\upharpoonright s) \text{ with } v(m)\neq f_G(m) \text{ satisfy } c(v,f_G\upharpoonright (m+n))=0.\\ \text{Hence } X_v\neq\dot{X}^G\cap\max(v). \text{ This uniquely determines } f_G(m). \end{array}$

Proof of the Theorem – Part I Proof of the Theorem – Part II Further Remarks

Proof of the Theorem – Part I

Theorem (Part I)

Let V[G] be a generic extension by \mathbb{P}_{u} . Then for every $X \subseteq \kappa$ in V[G] either $X \in V$ or $X \equiv_{V} f_{G}$.

Sketch of the proof (continued).

Claim 2. $\langle t, \overline{T} \rangle$ forces $\dot{X} \in V \lor \dot{X} \equiv_V \dot{f}$. *Proof.* We have $X_{f_G \upharpoonright (k+1)} = \dot{X}^G \cap f_G(k)$ for all k. Assume $\dot{X}^G \notin V$. How to construct f_G from \dot{X}^G : Assume we know $s := f_G \upharpoonright m$. Case 1. \checkmark Case 2. For all n > 0 the only value of c on $\{\langle u, v \rangle \in \operatorname{Lev}_{m+n}(\overline{T} \upharpoonright s) \times \operatorname{Lev}_{m+n}(\overline{T} \upharpoonright s) : u(m) \neq v(m)\}$ is 1. Then $X_{s \cap \langle \xi \rangle} = \dot{X}^G \cap \xi$ for all ξ , i.e., $\dot{X}^G = \bigcup_{\xi \in \operatorname{Suc}_{\pi}(s)} X_{s \cap \langle \xi \rangle} \in V$.

Proof of the Theorem – Part I Proof of the Theorem – Part II Further Remarks

Proof of the Theorem – Part I

Theorem (Part I)

Let V[G] be a generic extension by \mathbb{P}_{u} . Then for every $X \subseteq \kappa$ in V[G] either $X \in V$ or $X \equiv_{V} f_{G}$.

Sketch of the proof (continued).

Claim 2. $\langle t, \overline{T} \rangle$ forces $\dot{X} \in V \lor \dot{X} \equiv_V \dot{f}$. *Proof.* We have $X_{f_G \upharpoonright (k+1)} = \dot{X}^G \cap f_G(k)$ for all k. Assume $\dot{X}^G \notin V$. How to construct f_G from \dot{X}^G : Assume we know $s := f_G \upharpoonright m$. Case 1. \checkmark Case 2. For all n > 0 the only value of c on $\{\langle u, v \rangle \in \text{Lev}_{m+n}(\overline{T} \upharpoonright s) \times \text{Lev}_{m+n}(\overline{T} \upharpoonright s) : u(m) \neq v(m)\}$ is 1. Then $X_{s \frown \langle \zeta \rangle} = \dot{X}^G \cap \xi$ for all ξ , i.e., $\dot{X}^G = \bigcup_{z \in \text{Suc}_F(s)} X_{s \frown \langle \zeta \rangle} \in V$.

Proof of the Theorem – Part I Proof of the Theorem – Part II Further Remarks

Proof of the Theorem – Part I

Theorem (Part I)

Let V[G] be a generic extension by \mathbb{P}_{u} . Then for every $X \subseteq \kappa$ in V[G] either $X \in V$ or $X \equiv_{V} f_{G}$.

Sketch of the proof (continued).

Claim 2. $\langle t, \overline{T} \rangle$ forces $X \in V \lor X \equiv_V f$. *Proof.* We have $X_{f_G \upharpoonright (k+1)} = X^G \cap f_G(k)$ for all k. Assume $X^G \notin V$. How to construct f_G from X^G : Assume we know $s := f_G \upharpoonright m$. Case 1. \checkmark Case 2. For all n > 0 the only value of c on $\{\langle u, v \rangle \in \text{Lev}_{m+n}(\overline{T} \upharpoonright s) \times \text{Lev}_{m+n}(\overline{T} \upharpoonright s) : u(m) \neq v(m)\}$ is 1. Then $X_{s \cap \langle \xi \rangle} = X^G \cap \xi$ for all ξ , i.e., $X^G = \bigcup_{\xi \in \text{Suc}_{\pi}(s)} X_{s \cap \langle \xi \rangle} \in V$.

Proof of the Theorem – Part I Proof of the Theorem – Part II Further Remarks

Proof of the Theorem – Part I

Theorem (Part I)

Let V[G] be a generic extension by \mathbb{P}_{u} . Then for every $X \subseteq \kappa$ in V[G] either $X \in V$ or $X \equiv_{V} f_{G}$.

Sketch of the proof (continued).

 $\begin{array}{l} \text{Claim 2. } \langle t,\bar{T}\rangle \text{ forces } \dot{X} \in V \lor \dot{X} \equiv_V \dot{f}. \\ \text{Proof. We have } X_{f_G \upharpoonright (k+1)} = \dot{X}^G \cap f_G(k) \text{ for all } k. \text{ Assume } \dot{X}^G \notin V. \\ \text{How to construct } f_G \text{ from } \dot{X}^G \text{: Assume we know } s := f_G \upharpoonright m. \\ \text{Case 1. } \checkmark \\ \text{Case 2. For all } n > 0 \text{ the only value of } c \text{ on } \\ \{\langle u, v \rangle \in \text{Lev}_{m+n}(\bar{T} \upharpoonright s) \times \text{Lev}_{m+n}(\bar{T} \upharpoonright s) : u(m) \neq v(m)\} \text{ is 1.} \\ \text{Then } X_{s \cap \langle \xi \rangle} = \dot{X}^G \cap \xi \text{ for all } \xi, \text{ i.e., } \dot{X}^G = \bigcup_{\xi \in \text{Suc}_{\bar{T}}(s)} X_{s \cap \langle \xi \rangle} \in V. \end{array}$

Proof of the Theorem – Part I Proof of the Theorem – Part II Further Remarks

Proof of the Theorem – Part I

Claim 1

Let $s \in \overline{T}$ and $n < \omega$. Then c is constant on the set $\{\langle u, v \rangle \in \operatorname{Lev}_{|s|+n}(\overline{T} \upharpoonright s) \times \operatorname{Lev}_{|s|+n}(\overline{T} \upharpoonright s) : u(|s|) \neq v(|s|)\}.$

Proof of Claim 1.

First remember that

- the values of c on $\bar{T} \times \bar{T}$ only depend on the type,
- $u(m) \neq v(m)$ for all $\langle u, v \rangle$ in the above set, all $|s| \leq m < |s| + n$.

If there are $\langle u, v \rangle$ in the above set with c(u, v) = 1, then for all $\langle u', v' \rangle$ in the above set c(u', v') = 1.

Three steps to see this:

 $type(u, v) \rightsquigarrow l_{alternating} \rightsquigarrow l_{successive} \rightsquigarrow type(u', v')$

Proof of the Theorem – Part I Proof of the Theorem – Part II Further Remarks

Proof of the Theorem – Part I

Claim 1

Let $s \in \overline{T}$ and $n < \omega$. Then c is constant on the set $\{\langle u, v \rangle \in \operatorname{Lev}_{|s|+n}(\overline{T} \upharpoonright s) \times \operatorname{Lev}_{|s|+n}(\overline{T} \upharpoonright s) : u(|s|) \neq v(|s|)\}.$

Proof of Claim 1.

First remember that

- the values of c on $\bar{T} \times \bar{T}$ only depend on the type,
- $u(m) \neq v(m)$ for all $\langle u, v \rangle$ in the above set, all $|s| \leq m < |s| + n$.

If there are $\langle u, v \rangle$ in the above set with c(u, v) = 1, then for all $\langle u', v' \rangle$ in the above set c(u', v') = 1.

Three steps to see this:

 $\operatorname{type}(u, v) \sim \mathbb{t}_{alternating} \sim \mathbb{t}_{successive} \sim \operatorname{type}(u', v')$

Proof of the Theorem – Part I Proof of the Theorem – Part II Further Remarks

Proof of the Theorem – Part I

Claim 1

Let $s \in \overline{T}$ and $n < \omega$. Then c is constant on the set $\{\langle u, v \rangle \in \operatorname{Lev}_{|s|+n}(\overline{T} \upharpoonright s) \times \operatorname{Lev}_{|s|+n}(\overline{T} \upharpoonright s) : u(|s|) \neq v(|s|)\}.$

Proof of Claim 1.

First remember that

- the values of c on $\bar{T} \times \bar{T}$ only depend on the type,
- $u(m) \neq v(m)$ for all $\langle u, v \rangle$ in the above set, all $|s| \leq m < |s| + n$.

If there are $\langle u, v \rangle$ in the above set with c(u, v) = 1, then for all $\langle u', v' \rangle$ in the above set c(u', v') = 1.

Three steps to see this:

 $\operatorname{type}(u, v) \sim \mathbb{t}_{alternating} \sim \mathbb{t}_{successive} \sim \operatorname{type}(u', v')$

Proof of the Theorem – Part I Proof of the Theorem – Part II Further Remarks

Proof of the Theorem – Part I

Claim 1

Let $s \in \overline{T}$ and $n < \omega$. Then c is constant on the set $\{\langle u, v \rangle \in \operatorname{Lev}_{|s|+n}(\overline{T} \upharpoonright s) \times \operatorname{Lev}_{|s|+n}(\overline{T} \upharpoonright s) : u(|s|) \neq v(|s|)\}.$

Proof of Claim 1.

First remember that

- the values of c on $\bar{T} \times \bar{T}$ only depend on the type,
- $u(m) \neq v(m)$ for all $\langle u, v \rangle$ in the above set, all $|s| \leq m < |s| + n$.

If there are $\langle u, v \rangle$ in the above set with c(u, v) = 1, then for all $\langle u', v' \rangle$ in the above set c(u', v') = 1.

Three steps to see this:

 $\operatorname{type}(u, v) \sim \mathfrak{l}_{alternating} \sim \mathfrak{l}_{successive} \sim \operatorname{type}(u', v')$

Proof of the Theorem – Part I Proof of the Theorem – Part II Further Remarks

Proof of the Theorem – Part I

Claim 1

Let $s \in \overline{T}$ and $n < \omega$. Then c is constant on the set $\{\langle u, v \rangle \in \operatorname{Lev}_{|s|+n}(\overline{T} \upharpoonright s) \times \operatorname{Lev}_{|s|+n}(\overline{T} \upharpoonright s) : u(|s|) \neq v(|s|)\}.$

Proof of Claim 1.

First remember that

- the values of c on $\bar{T} \times \bar{T}$ only depend on the type,
- $u(m) \neq v(m)$ for all $\langle u, v \rangle$ in the above set, all $|s| \leq m < |s| + n$.

If there are $\langle u, v \rangle$ in the above set with c(u, v) = 1, then for all $\langle u', v' \rangle$ in the above set c(u', v') = 1.

Three steps to see this:

 $\operatorname{type}(u, v) \sim \mathfrak{t}_{alternating} \sim \mathfrak{t}_{successive} \sim \operatorname{type}(u', v')$

Proof of the Theorem – Part I Proof of the Theorem – Part II Further Remarks

Proof of the Theorem – Part I

Claim 1

Let $s \in \overline{T}$ and $n < \omega$. Then c is constant on the set $\{\langle u, v \rangle \in \operatorname{Lev}_{|s|+n}(\overline{T} \upharpoonright s) \times \operatorname{Lev}_{|s|+n}(\overline{T} \upharpoonright s) : u(|s|) \neq v(|s|)\}.$

Proof of Claim 1.

First remember that

- the values of c on $\bar{T} \times \bar{T}$ only depend on the type,
- $u(m) \neq v(m)$ for all $\langle u, v \rangle$ in the above set, all $|s| \leq m < |s| + n$.

If there are $\langle u, v \rangle$ in the above set with c(u, v) = 1, then for all $\langle u', v' \rangle$ in the above set c(u', v') = 1.

Three steps to see this:

 $\operatorname{type}(u,v) \sim \mathfrak{l}_{alternating} \sim \mathfrak{l}_{successive} \sim \operatorname{type}(u',v')$

Proof of the Theorem – Part I Proof of the Theorem – Part II Further Remarks

Proof of the Theorem – Part I

Claim 1

Let $s \in \overline{T}$ and $n < \omega$. Then c is constant on the set $\{\langle u, v \rangle \in \operatorname{Lev}_{|s|+n}(\overline{T} \upharpoonright s) \times \operatorname{Lev}_{|s|+n}(\overline{T} \upharpoonright s) : u(|s|) \neq v(|s|)\}.$

Proof of Claim 1.

First remember that

- the values of c on $\bar{T} \times \bar{T}$ only depend on the type,
- $u(m) \neq v(m)$ for all $\langle u, v \rangle$ in the above set, all $|s| \leq m < |s| + n$.

If there are $\langle u, v \rangle$ in the above set with c(u, v) = 1, then for all $\langle u', v' \rangle$ in the above set c(u', v') = 1.

Three steps to see this:

 $\operatorname{type}(u,v) \, \sim \, \mathbb{t}_{alternating} \, \sim \, \mathbb{t}_{successive} \, \sim \, \operatorname{type}(u',v')$

Proof of the Theorem – Part I Proof of the Theorem – Part II Further Remarks

Proof of the Theorem – Part I

Claim 1

Let $s \in \overline{T}$ and $n < \omega$. Then c is constant on the set $\{\langle u, v \rangle \in \operatorname{Lev}_{|s|+n}(\overline{T} \upharpoonright s) \times \operatorname{Lev}_{|s|+n}(\overline{T} \upharpoonright s) : u(|s|) \neq v(|s|)\}.$

Proof of Claim 1.

First remember that

- the values of c on $\bar{T} \times \bar{T}$ only depend on the type,
- $u(m) \neq v(m)$ for all $\langle u, v \rangle$ in the above set, all $|s| \leq m < |s| + n$.

If there are $\langle u, v \rangle$ in the above set with c(u, v) = 1, then for all $\langle u', v' \rangle$ in the above set c(u', v') = 1.

Three steps to see this:

$$\operatorname{type}(u,v) \, \sim \, \mathbb{t}_{alternating} \, \sim \, \mathbb{t}_{successive} \, \sim \, \operatorname{type}(u',v')$$

Proof of the Theorem – Part I Proof of the Theorem – Part II Further Remarks

Proof of the Theorem – Part I

Claim 1

Let $s \in \overline{T}$ and $n < \omega$. Then c is constant on the set $\{\langle u, v \rangle \in \operatorname{Lev}_{|s|+n}(\overline{T} \upharpoonright s) \times \operatorname{Lev}_{|s|+n}(\overline{T} \upharpoonright s) : u(|s|) \neq v(|s|)\}.$

Proof of Claim 1 (continued) for n = 3.

 $\langle 1, 0, 0, 1, 0, 1 \rangle \rightsquigarrow \mathbb{t}_{alternating} \rightsquigarrow \mathbb{t}_{successive} \rightsquigarrow \langle 1, 0, 0, 0, 1, 1 \rangle$

Proof of the Theorem – Part I Proof of the Theorem – Part II Further Remarks

Proof of the Theorem – Part I

Claim 1

Let $s \in \overline{T}$ and $n < \omega$. Then c is constant on the set $\{\langle u, v \rangle \in \operatorname{Lev}_{|s|+n}(\overline{T} \upharpoonright s) \times \operatorname{Lev}_{|s|+n}(\overline{T} \upharpoonright s) : u(|s|) \neq v(|s|)\}.$

Proof of Claim 1 (continued) for n = 3.

 $\langle 1, 0, 0, 1, 0, 1 \rangle \rightsquigarrow \mathbb{t}_{alternating} \rightsquigarrow \mathbb{t}_{successive} \rightsquigarrow \langle 1, 0, 0, 0, 1, 1 \rangle$

Proof of the Theorem – Part I Proof of the Theorem – Part II Further Remarks

Proof of the Theorem – Part I

Claim 1

Let $s \in \overline{T}$ and $n < \omega$. Then c is constant on the set $\{\langle u, v \rangle \in \operatorname{Lev}_{|s|+n}(\overline{T} \upharpoonright s) \times \operatorname{Lev}_{|s|+n}(\overline{T} \upharpoonright s) : u(|s|) \neq v(|s|)\}.$

Proof of Claim 1 (continued) for n = 3.

 $\langle 1,0,0,1,0,1\rangle \rightsquigarrow \mathbb{I}_{alternating} \rightsquigarrow \mathbb{I}_{successive} \rightsquigarrow \langle 1,0,0,0,1,1\rangle$

Proof of the Theorem – Part I Proof of the Theorem – Part II Further Remarks

Proof of the Theorem – Part I

Claim 1

Let $s \in \overline{T}$ and $n < \omega$. Then c is constant on the set $\{\langle u, v \rangle \in \operatorname{Lev}_{|s|+n}(\overline{T} \upharpoonright s) \times \operatorname{Lev}_{|s|+n}(\overline{T} \upharpoonright s) : u(|s|) \neq v(|s|)\}.$

Proof of Claim 1 (continued) for n = 3.

 $\langle 1, 0, 0, 1, 0, 1 \rangle \rightsquigarrow \texttt{l}_{alternating} \rightsquigarrow \texttt{l}_{successive} \rightsquigarrow \langle 1, 0, 0, 0, 1, 1 \rangle$

Proof of the Theorem – Part I Proof of the Theorem – Part II Further Remarks

Proof of the Theorem – Part I

Claim 1

Let $s \in \overline{T}$ and $n < \omega$. Then c is constant on the set $\{\langle u, v \rangle \in \operatorname{Lev}_{|s|+n}(\overline{T} \upharpoonright s) \times \operatorname{Lev}_{|s|+n}(\overline{T} \upharpoonright s) : u(|s|) \neq v(|s|)\}.$

Proof of Claim 1 (continued) for n = 3.

 $\langle 1,0,0,1,0,1\rangle \sim \mathbb{I}_{alternating} \sim \mathbb{I}_{successive} \sim \langle 1,0,0,0,1,1\rangle$

Proof of the Theorem – Part I Proof of the Theorem – Part II Further Remarks

Proof of the Theorem – Part I

Claim 1

Let $s \in \overline{T}$ and $n < \omega$. Then c is constant on the set $\{\langle u, v \rangle \in \operatorname{Lev}_{|s|+n}(\overline{T} \upharpoonright s) \times \operatorname{Lev}_{|s|+n}(\overline{T} \upharpoonright s) : u(|s|) \neq v(|s|)\}.$

Proof of Claim 1 (continued) for n = 3.

 $\langle 1, 0, 0, 1, 0, 1 \rangle \rightsquigarrow \mathbb{t}_{alternating} \rightsquigarrow \mathbb{t}_{successive} \rightsquigarrow \langle 1, 0, 0, 0, 1, 1 \rangle$

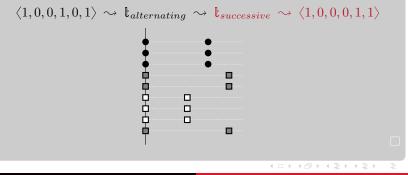
Proof of the Theorem – Part I Proof of the Theorem – Part II Further Remarks

Proof of the Theorem – Part I

Claim 1

Let $s \in \overline{T}$ and $n < \omega$. Then c is constant on the set $\{\langle u, v \rangle \in \operatorname{Lev}_{|s|+n}(\overline{T} \upharpoonright s) \times \operatorname{Lev}_{|s|+n}(\overline{T} \upharpoonright s) : u(|s|) \neq v(|s|)\}.$

Proof of Claim 1 (continued) for n = 3.



Karen Räsch A Minimal Prikry-type Forcing for Singularizing a Measurable Cardinal

Proof of the Theorem – Part I Proof of the Theorem – Part II Further Remarks

Proof of the Theorem – Part II

Theorem (Part II)

Let V[G] be a generic extension by \mathbb{P}_{μ} .

Then for every $X \in V[G]$ there exists $Y \subseteq \kappa$ in V[G] with $X \equiv_V Y$.

Proof.

Proceed by induction on the least γ with $X \subseteq \gamma$. Assume $\gamma > \kappa$.

Case 1. $cf(\gamma) \leq \kappa$.

We may assume that γ is a limit ordinal. In V[X] fix an increasing cofinal sequence $\langle \gamma_{\xi} : \xi < cf(\gamma) \rangle$ of ordinals in γ .

Fix a sequence $\langle Y_{\xi} : \xi < cf(\gamma) \rangle$ in V[X] such that $Y_{\xi} \equiv_V X \cap \gamma_{\xi}$.

Since \mathbb{P}_{u} has the κ^+ -cc we can code $\langle Y_{\xi} : \xi < cf(\gamma) \rangle$ and a recipe to obtain $X \cap \gamma_{\xi}$ from Y_{ξ} in some $Y \subseteq \kappa$.

Proof of the Theorem – Part I Proof of the Theorem – Part II Further Remarks

Proof of the Theorem – Part II

Theorem (Part II)

Let V[G] be a generic extension by \mathbb{P}_{μ} .

Then for every $X \in V[G]$ there exists $Y \subseteq \kappa$ in V[G] with $X \equiv_V Y$.

Proof.

Proceed by induction on the least γ with $X \subseteq \gamma$. Assume $\gamma > \kappa$.

Case 1. $cf(\gamma) \leq \kappa$.

We may assume that γ is a limit ordinal. In V[X] fix an increasing cofinal sequence $\langle \gamma_{\xi} : \xi < cf(\gamma) \rangle$ of ordinals in γ .

Fix a sequence $\langle Y_{\xi} : \xi < cf(\gamma) \rangle$ in V[X] such that $Y_{\xi} \equiv_V X \cap \gamma_{\xi}$.

Since \mathbb{P}_{u} has the κ^+ -cc we can code $\langle Y_{\xi} : \xi < cf(\gamma) \rangle$ and a recipe to obtain $X \cap \gamma_{\xi}$ from Y_{ξ} in some $Y \subseteq \kappa$.

Proof of the Theorem – Part I Proof of the Theorem – Part II Further Remarks

Proof of the Theorem – Part II

Theorem (Part II)

Let V[G] be a generic extension by \mathbb{P}_{μ} .

Then for every $X \in V[G]$ there exists $Y \subseteq \kappa$ in V[G] with $X \equiv_V Y$.

Proof.

Proceed by induction on the least γ with $X \subseteq \gamma$. Assume $\gamma > \kappa$.

Case 1. $cf(\gamma) \leq \kappa$.

We may assume that γ is a limit ordinal. In V[X] fix an increasing cofinal sequence $\langle \gamma_{\xi} : \xi < cf(\gamma) \rangle$ of ordinals in γ . Fix a sequence $\langle Y_{\xi} : \xi < cf(\gamma) \rangle$ in V[X] such that $Y_{\xi} \equiv_V X \cap \gamma_{\xi}$.

Since \mathbb{P}_u has the κ^+ -cc we can code $\langle Y_{\xi} : \xi < cf(\gamma) \rangle$ and a recipe to obtain $X \cap \gamma_{\xi}$ from Y_{ξ} in some $Y \subseteq \kappa$.

Proof of the Theorem – Part I Proof of the Theorem – Part II Further Remarks

Proof of the Theorem – Part II

Theorem (Part II)

Let V[G] be a generic extension by \mathbb{P}_{μ} .

Then for every $X \in V[G]$ there exists $Y \subseteq \kappa$ in V[G] with $X \equiv_V Y$.

Proof.

Proceed by induction on the least γ with $X \subseteq \gamma$. Assume $\gamma > \kappa$.

Case 1. $cf(\gamma) \leq \kappa$.

We may assume that γ is a limit ordinal. In V[X] fix an increasing cofinal sequence $\langle \gamma_{\xi} : \xi < cf(\gamma) \rangle$ of ordinals in γ .

Fix a sequence $\langle Y_{\xi} : \xi < \operatorname{cf}(\gamma) \rangle$ in V[X] such that $Y_{\xi} \equiv_V X \cap \gamma_{\xi}$. Since $\mathbb{P}_{\mathcal{U}}$ has the κ^+ -cc we can code $\langle Y_{\xi} : \xi < \operatorname{cf}(\gamma) \rangle$ and a recipe to obtain $X \cap \gamma_{\xi}$ from Y_{ξ} in some $Y \subseteq \kappa$.

Proof of the Theorem – Part I Proof of the Theorem – Part II Further Remarks

Proof of the Theorem – Part II

Theorem (Part II)

Let V[G] be a generic extension by \mathbb{P}_{μ} .

Then for every $X \in V[G]$ there exists $Y \subseteq \kappa$ in V[G] with $X \equiv_V Y$.

Proof.

Proceed by induction on the least γ with $X \subseteq \gamma$. Assume $\gamma > \kappa$.

Case 1. $cf(\gamma) \leq \kappa$.

We may assume that γ is a limit ordinal. In V[X] fix an increasing cofinal sequence $\langle \gamma_{\xi} : \xi < cf(\gamma) \rangle$ of ordinals in γ .

Fix a sequence $\langle Y_{\xi} : \xi < cf(\gamma) \rangle$ in V[X] such that $Y_{\xi} \equiv_V X \cap \gamma_{\xi}$.

Since \mathbb{P}_{u} has the κ^{+} -cc we can code $\langle Y_{\xi} : \xi < cf(\gamma) \rangle$ and a recipe to obtain $X \cap \gamma_{\xi}$ from Y_{ξ} in some $Y \subseteq \kappa$.

Proof of the Theorem – Part I Proof of the Theorem – Part II Further Remarks

Proof of the Theorem – Part II

Theorem (Part II)

Let V[G] be a generic extension by \mathbb{P}_{μ} .

Then for every $X \in V[G]$ there exists $Y \subseteq \kappa$ in V[G] with $X \equiv_V Y$.

Proof.

Proceed by induction on the least γ with $X \subseteq \gamma$. Assume $\gamma > \kappa$.

Case 1. $cf(\gamma) \leq \kappa$.

We may assume that γ is a limit ordinal. In V[X] fix an increasing cofinal sequence $\langle \gamma_{\xi} : \xi < cf(\gamma) \rangle$ of ordinals in γ .

Fix a sequence $\langle Y_{\xi} : \xi < cf(\gamma) \rangle$ in V[X] such that $Y_{\xi} \equiv_V X \cap \gamma_{\xi}$.

Since \mathbb{P}_{u} has the κ^+ -cc we can code $\langle Y_{\xi} : \xi < cf(\gamma) \rangle$ and a recipe to obtain $X \cap \gamma_{\xi}$ from Y_{ξ} in some $Y \subseteq \kappa$.

Proof of the Theorem – Part I Proof of the Theorem – Part II Further Remarks

Proof of the Theorem – Part II

Theorem (Part II)

Let V[G] be a generic extension by \mathbb{P}_{u} .

Then for every $X \in V[G]$ there exists $Y \subseteq \kappa$ in V[G] with $X \equiv_V Y$.

Proof.

Proceed by induction on the least γ with $X \subseteq \gamma$. Assume $\gamma > \kappa$.

```
Case 1. cf(\gamma) \leq \kappa. \checkmark
```

```
Case 2. cf(\gamma) > \kappa.
```

By the induction hypothesis either $X \cap \xi \in V$ or $X \cap \xi \equiv_V f_G$ for every $\xi < \gamma$.

```
We may assume that X \cap \xi \in V for all \xi < \gamma.
```

```
Show: If X \cap \xi \in V for all \xi < \gamma, then X \in V.
```

Proof of the Theorem – Part I Proof of the Theorem – Part II Further Remarks

Proof of the Theorem – Part II

Theorem (Part II)

Let V[G] be a generic extension by \mathbb{P}_{μ} .

Then for every $X \in V[G]$ there exists $Y \subseteq \kappa$ in V[G] with $X \equiv_V Y$.

Proof.

Proceed by induction on the least γ with $X \subseteq \gamma$. Assume $\gamma > \kappa$.

```
Case 1. cf(\gamma) \leq \kappa. \checkmark
```

```
Case 2. cf(\gamma) > \kappa.
```

By the induction hypothesis either $X \cap \xi \in V$ or $X \cap \xi \equiv_V f_G$ for every $\xi < \gamma$.

```
We may assume that X \cap \xi \in V for all \xi < \gamma.
```

```
Show: If X \cap \xi \in V for all \xi < \gamma, then X \in V.
```

Proof of the Theorem – Part I Proof of the Theorem – Part II Further Remarks

Proof of the Theorem – Part II

Theorem (Part II)

Let V[G] be a generic extension by \mathbb{P}_{u} .

Then for every $X \in V[G]$ there exists $Y \subseteq \kappa$ in V[G] with $X \equiv_V Y$.

Proof.

Proceed by induction on the least γ with $X \subseteq \gamma$. Assume $\gamma > \kappa$.

```
Case 1. cf(\gamma) \leq \kappa. \checkmark
```

Case 2. $cf(\gamma) > \kappa$.

By the induction hypothesis either $X \cap \xi \in V$ or $X \cap \xi \equiv_V f_G$ for every $\xi < \gamma$.

We may assume that $X \cap \xi \in V$ for all $\xi < \gamma$.

```
Show: If X \cap \xi \in V for all \xi < \gamma, then X \in V.
```

Proof of the Theorem – Part I Proof of the Theorem – Part II Further Remarks

Proof of the Theorem – Part II

Theorem (Part II)

Let V[G] be a generic extension by \mathbb{P}_{u} .

Then for every $X \in V[G]$ there exists $Y \subseteq \kappa$ in V[G] with $X \equiv_V Y$.

Proof.

Proceed by induction on the least γ with $X \subseteq \gamma$. Assume $\gamma > \kappa$.

```
Case 1. cf(\gamma) \leq \kappa. \checkmark
```

Case 2. $cf(\gamma) > \kappa$.

By the induction hypothesis either $X \cap \xi \in V$ or $X \cap \xi \equiv_V f_G$ for every $\xi < \gamma$.

We may assume that $X \cap \xi \in V$ for all $\xi < \gamma$.

Show: If $X \cap \xi \in V$ for all $\xi < \gamma$, then $X \in V$.

Proof of the Theorem – Part I Proof of the Theorem – Part II Further Remarks

Proof of the Theorem – Part II

Theorem (Part II)

```
Let V[G] be a generic extension by \mathbb{P}_{u}.
```

```
Then for every X \in V[G] there exists Y \subseteq \kappa in V[G] with X \equiv_V Y.
```

Proof.

Proceed by induction on the least γ with $X \subseteq \gamma$. Assume $\gamma > \kappa$.

```
Case 1. cf(\gamma) \leq \kappa. \checkmark
```

Case 2. $cf(\gamma) > \kappa$.

By the induction hypothesis either $X \cap \xi \in V$ or $X \cap \xi \equiv_V f_G$ for every $\xi < \gamma$.

```
We may assume that X \cap \xi \in V for all \xi < \gamma.
```

```
Show: If X \cap \xi \in V for all \xi < \gamma, then X \in V.
```

- we still have a Prikry-type forcing,
- this forcing will not be minimal in general because of the Covering Theorem for L[U],
- it is still possible to reduce the problem to subsets of κ .

- we still have a Prikry-type forcing,
- this forcing will not be minimal in general because of the Covering Theorem for L[U],
- it is still possible to reduce the problem to subsets of κ .

- we still have a Prikry-type forcing,
- this forcing will not be minimal in general because of the Covering Theorem for *L*[*U*],
- it is still possible to reduce the problem to subsets of κ .

- we still have a Prikry-type forcing,
- this forcing will not be minimal in general because of the Covering Theorem for *L*[*U*],
- it is still possible to reduce the problem to subsets of κ .

Now drop the assumption of normality. Then

- we still have a Prikry-type forcing,
- this forcing will not be minimal in general because of the Covering Theorem for *L*[*U*],
- it is still possible to reduce the problem to subsets of κ .

Thanks for listening! ©